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THE MATCHING LAW AND AMOUNT-DEPENDENT
EXPONENTIAL DISCOUNTING AS ACCOUNTS OF
SELF-CONTROL CHOICE
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UNIVERSITY OF NEW HAMPSHIRE

Studies with humans have found evidence for amount-dependent temporal discounting, that is, that
the sensitivity of choice to reinforcer delay varies inversely with reinforcer magnitude. To test whether
similar results could be obtained with nonhumans, pigeons were trained on a two-component con-
current-chains procedure in which the durations of food reinforcement in the terminal links were
equal within components but unequal between components. Terminal-link schedules were varied
over four conditions to allow separate estimates of sensitivity to delay to be obtained for the large
and small reinforcer-magnitude components. Although sensitivity to delay was greater in the small-
magnitude component for all subjects, the effect was quite small. The difference in sensitivity was
generally less than one standard error, and ¢ tests on parameter differences failed to reach signifi-
cance. Several models for temporal discounting, including an amount-dependent exponential func-
tion, were fitted to the data from the first four conditions. The resulting parameter estimates were
used to make predictions for a self-control condition in which one terminal link arranged a smaller,
less delayed reinforcer and the other arranged a larger, more delayed reinforcer. For all models,
predictions were considerably more accurate when sensitivity to delay was the same regardless of
reinforcer magnitude. The results support the independence of delay and magnitude as required
by a version of the matching law, and provide strong evidence against amount-dependent exponential
discounting as an account of self-control choice. A new two-parameter discounting function, consis-
tent with the matching law, is proposed that has wide empirical generality for both human and
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nonhuman data.
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Choice between alternatives that differ in
terms of delay and magnitude of reinforce-
ment has been studied under the rubric of
self-control: If an organism is confronted with
a choice between a larger, more delayed re-
inforcer and a smaller, more immediate re-
inforcer, choice for the smaller one is said to
demonstrate impulsivity, whereas choice for
the larger is described as self-control (Rach-
lin, 1974). Because of the similarity of func-
tional relations for humans and nonhumans
and its relevance for human decision making,
self-control has been widely studied (see
Logue, 1988, for review). Most experiments
on self-control use the concurrent-chains pro-
cedure, in which subjects respond on simul-
taneously available initial-link schedules that
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provide access to one of two mutually exclu-
sive terminal-link schedules. Choice in the
initial links is interpreted as a measure of
preference for the terminal links. For exam-
ple, a higher response rate in the initial link
preceding the terminal link that delivers a
smaller, more immediate reinforcer demon-
strates impulsivity, whereas greater respond-
ing in the initial link preceding the terminal
link that provides a larger, more delayed re-
inforcer is termed self-control.

The basic quantitative framework for the
analysis of self-control has been Baum and
Rachlin’s (1969) extension of the matching
law (Herrnstein, 1961), which posits a multi-
plicative relation between reinforcement de-
lay and magnitude. According to their model,
the ratio of responding to two concurrent
schedules (B;/Bz) matches the product of
relative reinforcement rate (R), immediacy
(i.e., the reciprocal of delay, 1/D), and mag-
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Table 1

Summary results of experiments with nonhumans that have tested the assumptions of the
matching law regarding reinforcement delay and magnitude. Listed are studies that have
tested whether sensitivities to relative delay and magnitude are independent of absolute and
relative delay and magnitude and the similarity of delays and magnitudes. Other studies that
have tested the independence of relative and absolute delay are Logue and Chavarro (1987),
Williams and Fantino (1978), and Omino (1993). Other studies that have tested the indepen-
dence of relative magnitude and absolute delay are Ito and Asaki (1982) and White and Pipe

(1987).
Same/
differ-
Relative Absolute Absolute ent Same/different
Relative delay magnitude delay magnitude  delay magnitude
Sensitivity to rela- N/A Yes No? ? N/A No?
tive delay Rodriguez and ~ MacEwen (1972) Grace (1995a)
Logue (1986) and other
studies
Sensitivity to rela- Yes N/A No? No ? N/A
tive magnitude  Rodriguez and Navarick and Logue and
Logue (1986) Fantino Chavarro
(1976) and (1987)

other studies

Note. Yes = row and column variables have independent effects on choice; No = row and column variables do not
have independent effects on choice. N/A = not applicable.
2 Violation of independence is explained by the contextual choice model (Equation 3).

reversals that have been obtained in self-con-
trol choice: As the delays to the small and
large reinforcer increase, preference shifts
from the small to the large reinforcer (Ainslie
& Herrnstein, 1981; Green, Fisher, Perlow, &
Sherman, 1981; Kirby & Herrnstein, 1995).
A limitation of Equation 1 is that it cannot
describe systematic deviations from matching
or individual differences in preference. Ac-
cordingly, Logue, Rodriguez, Pena-Correal,
and Mauro (1984) suggested a modification
analogous to the generalized matching law
(Baum, 1974) as a descriptive model for self-

control:
By _ (/P (M)
By 1/Dy M)

Equation 2 adds three parameters: bias (0),
which is variation in relative responding due
to position preference or other systematic fac-
tors unrelated to reinforcer delay and mag-
nitude, and sensitivity exponents for delay
(ay) and magnitude (az). Logue et al. report-
ed that Equation 2 was able to describe the
data from a variety of experiments on self-
control, including the effects of training his-
tory such as the greater sensitivity to magni-
tude produced by special fading-like
procedures (Mazur & Logue, 1978). Note

(2)

that reinforcement rate has been omitted
from the right side of Equation 2, because
many self-control experiments have used in-
terdependent scheduling arrangements
(Stubbs & Pliskoff, 1969) that equate expo-
sure to both alternatives (e.g., Rodriguez &
Logue, 1986). In addition, reinforcement
rate has been shown to have virtually no ef-
fects on choice separate from delay for ter-
minal links that deliver single reinforcers
(Logue, Smith, & Rachlin, 1985; Mazur, Sny-
derman, & Coe, 1985).

Two assumptions must be valid if the ex-
tended matching law is to provide an ade-
quate account of self-control: (a) Delay and
magnitude are independent dimensions of
reinforcer value (Killeen, 1972), and (b) rel-
ative, not absolute, delays and magnitudes
control preference. Table 1 summarizes the
results of experiments with nonhuman sub-
jects that have tested these assumptions. Only
one experiment has found evidence that they
are valid in some cases for the matching law
as represented by Equations 1 and 2. Rodri-
guez and Logue (1986) varied relative delays
and magnitudes over successive conditions
and found that their effects on pigeons’
choice in a self-control procedure were in-
dependent. In all other cases, the predictions
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of Equations 1 and 2 have not been support-
ed.

However, some of these failures can be ac-
counted for by an extension of the general-
ized matching law proposed by Grace (1994)
as a model for concurrent chains:

T/ Ti)k
i =) & “ l/DI, " % o (g)
By Ry 1/Dy) \ My Y

According to Equation 3, which is called the
contextual choice model, relative responding
in the initial links matches the relative rates
of entry into the terminal links (R /Ry), with
bias () and sensitivity (a,) parameters as in
the generalized matching law. Note that R
and Ry refer to rates of conditioned rein-
forcement; the model makes the assumption
that conditioned and primary reinforcers are
functionally equivalent in their effect on
choice (cf. Equation 1). The values of the ter-
minal links are represented by the ratios for
delay and magnitude within the brackets, as
in Equation 2. The unique feature of the
model is the exponent, (7t/Ti)* where Tt
and 77 are the average times spent in the ter-
minal and initial links per reinforcement, and
k is a scaling parameter. This exponent rep-
resents the effects of temporal context (i.e.,
overall initial- and terminal-link duration;
Fantino, 1969) on choice. Because Equation
3 reduces to the generalized matching law in
the limit as 7t approaches zero, it may be
viewed as a natural extension of the matching
law. Similar to the generalized matching law,
a logarithmic transformation can be used
when parameters in Equation 3 are to be es-
timated for a given data set.

The temporal context exponent allows
Equation 3 to account for most of the viola-
tions of the matching law in Table 1. For ex-
ample, MacEwen (1972) found that sensitivity
to delay depended on the absolute duration
of the delays; this is consistent with Equation
3 because as absolute delay increases, the ef-
fective sensitivity to delay, which is a,(1t/ T0)*,
also increases. Similarly, Equation 3 predicts
the increase in sensitivity to magnitude as a
function of absolute delay reported by Navar-
ick and Fantino (1976). Finally, Equation 3
was able to account for an apparent interac-
tion between delay and magnitude reported
by Grace (1995a). He tested whether sensitiv-
ity to delay depended on whether the rein-

forcer magnitudes for the terminal links were
the same or different. Although sensitivity was
greater in the same-magnitude conditions
when the data were analyzed with the gener-
alized matching law (Equation 2), when ob-
tained time in the initial links was included
and Equation 3 was fitted to the data the sys-
tematic difference vanished. Therefore, by in-
cluding effects of temporal context on pref-
erence, Equation 3 can account for all of the
reported violations of matching law assump-
tions in Table 1, with the exception of the
effect of absolute magnitude on sensitivity to
relative magnitude reported by Logue and
Chavarro (1987).

One cell in Table 1 that has not been ex-
plored with nonhumans is whether sensitivity
to delay is affected by the absolute magnitude
of reinforcement. By contrast, this issue has
received much attention in research on tem-
poral discounting with humans. Temporal
discounting refers to the process whereby the
value or effectiveness of a rewarding event de-
creases as that event is delayed. For example,
if humans are offered choices between hy-
pothetical amounts of money available either
immediately or after a delay, the function re-
lating the amount available immediately that
is judged equivalent to a larger, delayed
amount (i.e., the “present value” of the de-
layed amount) is a decreasing negatively ac-
celerated function of delay (Rachlin, Raineri,
& Cross, 1991). Many studies have found that
humans discount larger rewards at signifi-
cantly slower rates than smaller rewards (Ben-
zion, Rapoport, & Yagil, 1989; Green, Fristoe,
& Myerson, 1994; Green, Fry, & Myerson,
1994; Kirby, 1997; Kirby & Marakovic, 1996;
Myerson & Green, 1995; Raineri & Rachlin,
1993). However, it is unknown whether
amount-dependent discounting is obtained
with nonhuman subjects.

Another topic that has attracted much at-
tention is the mathematical form of the dis-
counting function. The generalized matching
law implies that value is a power function of
reinforcement immediacy (see Grace, 1996).
However, the hyperbolic function proposed
by Mazur (1987) has been the most widely
used:

M
1+ KD’
In Equation 4, called the hyperbolic-decay

4 (4)
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model, M is the magnitude of reinforcement
and K is the discounting rate parameter (i.e.,
sensitivity to delay; see Mazur, 1997, for re-
view). Equation 4 correctly predicts both
preference reversals in self-control choice
(Green et al., 1981), and that the indiffer-
ence function relating the delays to smaller
and larger reinforcers that are judged to be
equivalent in value has a slope greater than 1
(Mazur, 1987). Neither prediction is made by
an exponential discounting function, which is
the normative function assumed by econo-
mists (Samuelson, 1937): V = Me ",

Yet preference reversals and the indiffer-
ence functions reported by Mazur (1987)
cannot be taken as conclusive evidence
against exponential discounting. As Green
and colleagues have pointed out, an expo-
nential function can predict both of these if
the discounting rate is amount dependent
(Green et al., 1981; Green, Fristoe, & Myer-
son, 1994). Thus, the strongest evidence to
date on the form of the discounting function
comes from studies that have compared the
fits of hyperbolic and exponential functions
to the same data. These studies have consis-
tently found that the hyperbolic function ac-
counts for more variance (Kirby, 1997; Myer-
son & Green, 1995; Rachlin et al., 1991),
although the difference can be quite small
(Kirby & Marakovic, 1995). It would there-
fore be useful to have a direct experimental
test of amount-dependent exponential dis-
counting, and, more generally, to establish
whether amount-dependent discounting is
found in nonhumans. Such a result would
pose a serious challenge to the matching law
as applied to self-control.

The aims of the present experiment were
(a) to test whether evidence for amount-de-
pendent discounting could be found with pi-
geons and (b) to compare the efficacy of the
extended matching law and amount-depen-
dent exponential discounting as accounts of
self-control choice. Pigeons responded in a
two-component concurrent chain in which
the reinforcement magnitudes in both ter-
minal links in a component were either small
or large. The relative immediacy of reinforce-
ment was varied over successive conditions,
and temporal discounting parameters for a
variety of models, including power, hyperbol-
ic, and exponential functions, were estimated
for the small and large reinforcer compo-
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nents for individual subjects. These estimates
were then used to generate predictions for a
self-control condition, in which the pigeons
chose between a smaller, less delayed rein-
forcer and a larger, more delayed reinforcer.
At issue was whether sensitivity to delay would
decrease with increasing reinforcement mag-
nitudes, as has been reported for humans,
and which temporal discounting function
made the most accurate predictions for the
self-control condition.

METHOD
Subjects

Four White Carneau pigeons, numbered
123, 125, 139, and 154, participated as sub-
jects, and were maintained at 85% ad libitum
weight =15 g. All had previous experience
with a variety of experimental procedures.
They were housed in individual cages in a vi-
varium with a 12:12 hr light/dark cycle (lights
on at 7 a.m.). Water and grit were continu-
ously available in the home cages.

Apparatus

Four standard three-key operant chambers
were used. The chambers measured 35 cm in
length, 35 cm in width, and 35 cm in height,
and three keys were located 26 cm above the
floor. Only the side keys were used, and could
be transilluminated red or green. All cham-
bers were equipped with a houselight 7 cm
above the center key for ambient illumina-
tion, and a grain magazine with an opening
(6 cm by 5 cm) located 13 cm below the cen-
ter key. The magazine was illuminated during
reinforcement. A force of approximately 0.10
N was required to operate each key, and each
effective response produced an audible feed-
back click. Chambers were enclosed in sound-
attenuating boxes that were fitted with venti-
lation fans for masking extraneous noises.
The experiment was controlled with a MED-
PC® system interfaced to an IBM-compatible
microcomputer located in an adjacent room.

Procedure

Because all subjects were experienced,
training began immediately on a multiple-
component concurrent-chains procedure.
Sessions ended when two components had
been completed or 75 min had elapsed,
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whichever occurred first. Each component
was a separate concurrent chain, and was fin-
ished when 36 initial- and terminal-link cycles
had been completed. All cycles ended with
reinforcement. Components were separated
by a 3-min blackout during which the key-
lights and houselight were extinguished, and
component order varied randomly from ses-
sion to session. Components differed only in
the color of the keylight stimuli used (red or
green) and the reinforcement magnitude
(duration of access to grain) for left and right
terminal-link responses. For all but the self-
control condition (see below), reinforcement
magnitude was equal for both terminal links
within each component, but differed between
components. Sessions were conducted 7 days
per week at approximately the same time of
day.

At the start of a cycle, the side keys were
illuminated the same color (red or green) to
signal the availability of independent, con-
current variable-interval (VI) VI initial-link
schedules. Timing of the initial links did not
begin until the first peck to either key oc-
curred. This allowed postreinforcement paus-
es to be recorded separately and were not
counted toward the completion of initial-link
schedule requirements. In all conditions and
components, the initial links were concurrent
VI 30-s VI 30-s schedules. Each schedule con-
tained 12 intervals constructed from an arith-
metic progression, a, a + d, a + 2d, ..., in
which a equals one 12th and d equals one
sixth the schedule value. Intervals were sam-
pled randomly without replacement. Arith-
metic rather than exponential schedules were
used to reduce the variability in obtained ini-
tial-link interreinforcer intervals.

When an initiallink schedule had timed
out, the next response to that key (provided
it was not the first response of the cycle) pro-
duced an entry into the terminal link associ-
ated with that key. There was no changeover
delay. Terminal-link entry was signaled by a
change in the keylight from continuous to
blinking illumination (0.25 s off, 0.25 s on),
coupled with the other keylight being extin-
guished. Terminal-link responses were rein-
forced according to VI schedules containing
12 intervals constructed from exponential
progressions (Fleshler & Hoffman, 1962).
Schedules varied for the left and right ter-
minal links across experimental conditions,

but were always the same for both compo-
nents in all but the self-control condition. In-
tervals from the terminal-link schedules were
sampled without replacement, and separate
lists of intervals were maintained for both
components. When a terminal-link response
was reinforced, the keylight and houselight
were extinguished and the grain magazine
was raised and illuminated for a specified du-
ration. After reinforcement the houselight
and initial-link keylights were reilluminated
and the next cycle began, unless the 36th re-
inforcer in the component had just been
earned, in which case either a 3-min inter-
component blackout began or the session
ended.

Table 2 lists the experimental conditions
and order of presentation for each subject.
There were six conditions. The first four con-
ditions were presented in counterbalanced
order across subjects, and the terminal-link
immediacy ratios were 4:1, 1:4, 2:1, or 1:2.
The terminal-link delays always summed to 30
s, so the programmed time spent in the ter-
minal and initial links was equal (7t = Ti =
15 s), which Grace (1994) suggested as a
method for minimizing temporal context ef-
fects on choice. The reinforcement magni-
tudes were in a 2.5:1 ratio between compo-
nents, and were arranged as follows for the
red and green components in the first four
conditions: Bird 123, 1.7 s and 4.25 s; Bird
125, 4 s and 1.6 s; Bird 139, 2.4 s and 6 s; Bird
154, 4 s and 1.6 s. Magnitudes were adjusted
individually (while a 2.5:1 ratio was main-
tained) during the early sessions of the first
condition so as to minimize the need for
postsession feeding.

The fifth condition was a self-control test,
in which the pigeons chose between terminal
links that delivered either a smaller, less de-
layed reinforcer or a larger, more delayed re-
inforcer. The durations of the smaller and
larger reinforcers were the same as in the first
four conditions. The terminal links were VI 3
s VI 17 s in one component and VI 13 s VI
27 s in the other component. The latter pair
of schedules was defined by adding 10 s to
the intervals comprising the VI 3-s and VI 17-
s schedules. Together, both schedule pairs
constituted a preference reversal test; that is,
relative initial-link responding should favor
the terminal link that delivered the smaller
reinforcer in the VI 3-s VI 17-s component
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Table 2

The conditions in the order in which they were presented for each subject. VI schedule values
(in seconds) are given for the left and right terminal links in each component, and reinforce-
ment magnitudes (seconds of access to food) are listed in parentheses. Training in each
condition lasted 35 sessions.

Bird Condition Red component Green component
123 1 VI 10 (1.7 5) VI 20 (1.7 s) VI 10 (4.25)s VI 20 (4.25 s)
2 VI 20 (1.7 s) VI 10 (1.7 s) VI 20 (4.25s) VI 10 (4.25 s)
3 VI 6 (1.7 s) VI 24 (1.7 s) VI 6 (4.25 s) VI 24 (4.25 s)
4 VI 24 (1.7 s) VI6 (1.7 s) VI 24 (4.25s) VI 6 (4.25 s)
5 VI 17 (4.25s) VI3 (1.75) VI 27 (4.25s)  VI13 (1.7 s5)
6 VI 10 (1.7 s) VI 20 (1.7 s) VI 10 (4.25s) VI 20 (4.25s)
125 1 VI 20 (4 s) VI 10 (4 s) VI20 (1.6s)  VI10 (1.6s)
2 VI 10 (4 s) VI 20 (4 's) VI 10 (1.6 s) VI 20 (1.6 s)
3 VI 24 (4 s) VI6 (45) VI24 (1.6s)  VI6 (1.65s)
4 VI 6 (45) VI 24 (4 s) VI 6 (1.6 s) VI 24 (1.6 s)
5 VI 3 (1.6 s) VI 17 (4 's) VI 13 (1.6 s) VI 27 (4 s)
6 VI 20 (4 s) VI 10 (4 s) VI 20 (1.6 s) VI 10 (1.6 s)
139 1 VI 24 (2.4s) VI 6 (2.4 s) VI 24 (6 s) VI 6 (6 s)
2 VI 6 (2.4 ) VI 24 (2.4 5) VI 6 (65) VI 24 (6 s)
3 VI 20 (2.4 s) VI 10 (2.4s) VI 20 (6 s) VI 10 (6 s)
4 VI 10 (2.4 s) VI 20 (2.4 s) VI 10 (6's) VI 20 (6 s)
5 VI 13 (2.4s) VI 27 (6 s) VI 3 (2.4 s) VI 17 (6 s)
6 VI 24 (2.4 5) VI6 (2.45) VI 24 (6s) VI 6 (6 s)
154 1 VI6 (45) VI 24 (4s) VI 6 (1.6 s) VI 24 (1.6 s)
2 VI 24 (4 s) VI 6 (45) VI 24 (1.6 s) VI 6 (1.6 s)
3 VI 10 (4s) VI 20 (4s) VI 10 (1.6 s) VI 20 (1.6 s)
4 VI 20 (4 s) VI 10 (4 s) VI 20 (1.6 s) VI 10 (1.6 s)
5 VI 27 (4 s) VI 13 (1.6 s) VI 17 (4 s) VI 3 (1.6 s)
6 VI6 (45) VI 24 (4 s) VI 6 (1.6s) VI 24 (1.6 s)
but the larger reinforcer in the VI 13-s VI 27- RESULTS

s component. The purpose of the fifth con-
dition was to determine which temporal dis-
counting function made the most accurate
predictions based on the results from the first
four conditions.

In an attempt to minimize hysteresis or car-
ryover effects from the fourth condition, pri-
or to the fifth condition all birds received 13
sessions with the left and right terminal links,
as given in Table 2, reversed. Then the sched-
ules were reversed again and training in the
fifth condition began. The sixth condition
was a replication of the first.

All conditions were in effect for 35 sessions.
A stability criterion was not employed, be-
cause in the author’s experience this amount
of training is usually sufficient for perfor-
mances to stabilize in this procedure. In ad-
dition, using a fixed number of sessions
avoided the possibility of hysteresis effects re-
sulting from different amounts of training
across conditions.

The primary data analyzed were the initial-
and terminal-link response rates. Initial-link
time allocation (measured by time from the
first peck on a side key until the first peck on
the other side key) was also examined, but
the results were similar to the response-allo-
cation data and are not discussed further.
Postreinforcement pauses (i.e., latency to the
first initial-link response) were excluded for
calculation of initial-link response rates and
time allocation. Selected raw data are listed
in the Appendix. All data were summed over
the last 10 sessions in each condition.

The effects of reinforcement magnitude on
overall initial-link responding were strong
and reliable. In the left panel of Figure 1,
overall initial-link response rate (i.e., total ini-
tial-link responses divided by initial-link time)
in the large-magnitude component is plotted
as a function of the corresponding rate in the
small-magnitude component. Data from the
first four conditions and the replication con-
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The left panel shows overall initial-link response rate in the large-magnitude component as a function of

the corresponding rate in the small-magnitude component. The right panel shows overall terminal-link response rate
in the large-magnitude component as a function of the corresponding rate in the small-magnitude component. Data
are shown for all subjects and from the first four conditions and the replication condition.

dition are shown, and individual birds are
marked as noted in the legend. Points that
lie above the diagonal represent conditions
in which the overall initial-link response rate
was higher in the large-magnitude compo-
nent; this was true in every condition for all
subjects. Averaged across subjects and condi-
tions, overall initial-link response rate in the
large-magnitude component was increased by
30% relative to the small component rate.
The right panel of Figure 1 depicts a similar
analysis of terminal-link response rates. In
contrast with overall initial-link rate, there
were no systematic differences in terminal-
link response rate between the large- and
small-magnitude components. This is consis-
tent with studies that have reported little or
no effect of reinforcement magnitude on re-
sponding under single schedules (see Bonem
& Crossman, 1988, for review).

Is the Rate of Temporal Discounting
Amount Dependent?

The primary question in the present study
was whether reinforcement magnitude affect-
ed the rate of temporal discounting. For this
analysis, relative initial-link response rates
from the first four conditions were modeled
with a logarithmic version of the contextual
choice model (Equation 3). The temporal
context exponent (7t/Ti)"* was ignored (i.e.,
set equal to 1) for this and subsequent ana-

lyses, because the obtained times in the ter-
minal and initial links were close to pro-
grammed values and thus were equal.

1/D,
1/Dy

B R
logB_le = log b + allogé + a,log

M,
+ aglogﬁ. (5)

R

The sensitivity-to-delay parameter in Equa-
tion 5 (a,) measures the rate of temporal dis-
counting, assuming that the relation between
reinforcer delay and value is a power function
(see Footnote 1 below). Because reinforce-
ment magnitudes were equal within each
component, the rightmost term in Equation
5 can be dropped. Thus, estimates of a, may
be obtained by linear regression if the value
of a, (sensitivity to terminal-link entry rate) is
fixed. The approach taken here was to as-
sume a priori that ¢, was equal to 1. In prac-
tical terms, this means that the log initial-link
response ratio was corrected for the effect of
unequal terminallink entries (i.e., the log
terminal-link entry ratio was subtracted from
the log initial-link response ratio) prior to
performing a regression to estimate a,. The
rationale for this assumption, rather than es-
timating «, directly with multiple regression,
is as follows. Although the initial-link sched-
ules were equal in all conditions, because
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they were independent, the obtained ratio of
terminal-link entries (Ry/Ry) varied system-
atically from the programmed ratio of 1:1 in
conditions in which relative initial-link re-
sponding was most extreme. The problem
with estimating ¢, is that the terminal-link en-
try ratio is not a true independent variable,
but depends on relative initial-link response
rate. Consequently, best fitting values of g
tend to be rather large (>2), but it is unlikely
that this reflects true sensitivity to the entry
ratio.

Figure 2 shows, for all subjects and both
components, the log of the initial-link re-
sponse ratio as a function of the log of the
programmed terminal-link immediacy (i.e.,
reciprocal of delay) ratio. (An equivalent
analysis was performed using the obtained
immediacies, but the results were highly sim-
ilar.) The slopes of the regression equations
(i.e., sensitivity to delay) were usually close to
matching to relative immediacy. For all sub-
jects, the slope was greater for the small-mag-
nitude component. However, the slope differ-
ences were very small, and were generally less
than the standard errors. In no case did the
slope difference for a particular subject reach
significance on a ¢ test (Davison & McCarthy,
1988, p. 67).

Because the conclusion that the slope dif-
ferences were small might have depended on
the value chosen for ¢, (i.e., 1), the analysis
in Figure 2 was replicated across a range of
values for ¢,. Figure 3 shows the regression
slopes for the large- and small-magnitude
components, for all subjects as @, was varied
from O to 3. The slopes in both components
decrease with increases in g,, and in general
the difference is less than one standard error
over the range of @, values. Again, all slope
differences failed to reach statistical signifi-
cance for each subject. This demonstrates
that the small slope differences in Figure 2
were not an artifact of the value of @,. How-
ever, because these differences are in the
same direction as the human data (i.e., an
inverse relation between discounting rate and
reinforcement magnitude) and were ob-
tained for each subject, it is possible that they
represent a small but genuine effect. This
possibility is further tested below, when pre-
dictions for the self-control condition are
compared assuming either amount-depen-
dent or amount-independent discounting.

A Comparison of Temporal
Discounting Functions

The second major goal of the present study
was to determine which of several temporal
discounting functions gave the best overall ac-
count of the data from the first four condi-
tions, and which made the most accurate pre-
dictions for the self-control condition. Fixed
delays to different reinforcement magnitudes
have been used in most prior research on
self-control and temporal discounting (for an
exception, see Chelonis, King, Logue, & To-
bin, 1994). To apply a temporal discounting
function to variable-delay schedules, as in the
present study, a common tactic is to assume
that the value of a schedule is the average of
the individual delays to reinforcement com-
prising that schedule, after the delays have
been scaled according to a discounting func-
tion:

(6)

where fis the discounting function and d,,
..., d, are n equally probable delays to rein-
forcement (e.g., Mazur, 1984). A generalized
form of Equation 5 can be used together with
Equation 6 to allow any discounting function
to be applied to the present data:

1
V=23 ),

=1

B R
logE: = log b + aﬂog(é)

M

+ aglog(ﬁz). (7)
The power function of the immediacy ratio
in Equation 5, a,log[(1/Dy)/(1/Dg)], has
been replaced with a log value ratio. Given a
specific discounting function, the intervals
comprising the VI schedules are used to com-
pute values according to Equation 6. The val-
ue ratio is then entered into Equation 7 to
generate a predicted preference. In this way,
any discounting function may be investigated.
For example, an exponential discounting
function can be used if V= (1/n) 2, ¢ %,
If fis a power function, so that V = (1/n)
37, dm™, then Equation 5 is obtained.!

! Grace (1996) showed that if fwas a power function,
then given two VI schedules in which the individual de-
lays differed by a multiplicative constant (which is true
when the intervals in the schedules are generated by the
same progression), the ratio of schedule values calculated
according to Equation 6 was equal to a power function
of the ratio of the average delays.
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Fig. 2. The log of the initial-link response ratio as a function of the log programmed terminal-link reinforcement
immediacy ratio. For all subjects, data from both components from the first four conditions (squares) and the
replication condition (circles) are shown. Regression equations (based on the first four conditions) for the small-
magnitude component (Y,; dashed lines) and large-magnitude component (Y,,; solid lines) are listed, along with

standard errors for the slopes.

Amount-dependent discounting functions
can be modeled by estimating parameters
separately for data from the large- and small-
magnitude components. For amountinde-
pendent discounting, a single parameter is es-
timated for the combined data.

The discounting functions considered were
an amount-dependent exponential and sev-
eral power-hyperbolic functions of the gen-
eral form

1

D) = hany

(8)

Equation 8 incorporates all of the free param-

eters (k, ¢, s) that have been used in previous
nonexponential models for discounting (e.g.,
Grace, 1996; Loewenstein & Prelec, 1992; Ma-
zur, 1984; Myerson & Green, 1995) and adds
a new one, c¢. Specific discounting functions
are obtained when one or more of these pa-
rameters are fixed while the others are al-
lowed to vary. Table 3 shows the discounting
functions (besides the exponential) that were
applied to the present data. (a) When ¢ = 0,
k =s = 1, and ¢ varies, Equation 8 gives the
simple power function used in the analysis
above (i.e., Equation 5). (b) The function
that results when ¢ = k£ = s = 1 and ¢ varies
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Fig. 3. Best fitting estimates of sensitivity to delay (ay) as a function of sensitivity to the terminal-link entry ratio
(a). Data are shown separately for the small-magnitude component (open squares) and large-magnitude component
(filled squares). Error bars extending above the data point indicate one standard error for the large-magnitude
component; those extending below indicate one standard error for the small-magnitude component.

Table 3

A general temporal discounting function that subsumes
all of the functions that have been proposed in prior
research. Specific discounting functions are obtained de-
pending which parameters are fixed and which are al-
lowed to vary.

1
) = —

S (¢ + kd)s
Parameters
c k q s Discounting function
f £ v £ 1/a1,1/(1 + d7) (Grace, 1996)
f v £ £ 1/(1 + kd) (Mazur, 1984)
f v £ v 1/(1 + kd)S (Myerson & Green, 1995)
v £ v £ 1/(c+ d)

Note. f = parameter is fixed; v = parameter varies.

was suggested by Grace (1996) as an improve-
ment over the simple power function because
it avoids the problem of the value of a zero-
delay reinforcer being infinite. (c) Mazur’s
(1984, 1987) hyperbolic-decay model is ob-
tained when ¢ = ¢ = s = 1 and k varies. (d)
Myerson and Green (1995) found that the hy-
perbolic function with exponent, obtained
when ¢ = ¢ = 1 and k and s vary (originally
proposed by Loewenstein & Prelec, 1992),
provided a better account of their data than
did the hyperbolic-decay model. (e) The last
function to be considered is defined by k =
s = 1 and cand ¢ vary, which might be called
a power function with additive constant.
These five discounting functions, plus the
exponential, were used in Equation 6 to cal-
culate values for the schedules which, when
inserted into Equation 7, maximized the var-
iance accounted for in the first four condi-
tions. Schedule values were obtained using



AMOUNT-DEPENDENT DISCOUNTING? 37

the programmed distributions of reinforcer
delays. Table 4 shows the estimated parame-
ters and variance accounted for by each mod-
el. No one model was clearly superior; all ac-
counted for a high proportion of the variance
(ranging from 96.6% to 97.5%, on average).
Parameters for the hyperbolic-decay model
(Equation 4) are not shown, because ex-
tremely large values of K were estimated for
all subjects. In the limit as K approaches in-
finity, the hyperbolic-decay model becomes
equivalent to matching to relative immediacy
(i.e., a = 1); thus, it is redundant with the
power function for the present data because
very close approximations to matching were
obtained.

The parameter estimates in Table 4 were
used to make predictions for preference in
the self-control condition. Here the pigeons
were confronted with a choice between a
smaller, less delayed reinforcer and a larger,
more delayed reinforcer. The reinforcer du-
rations were the same as those used in the
first four conditions, but now were varied
within rather than between components. The
terminal-link schedules were VI 3 s VI 17 s in
one component and VI 13 s VI 27 s (defined
by adding 10 s to each of the intervals com-
prising the VI 3 s and VI 17 s) in the other
component.

Figure 4 shows a comparison of the some
of the models’ predictions with the obtained
data from the self-control condition. In order
to make parameter-free predictions, sensitiv-
ity to magnitude () in Equation 7 for each
subject was set equal to 1.5. This value was
selected because it is the approximate aver-
age sensitivity to magnitude reported by
Grace (1995a), who used a similar multiple-
component concurrent-chains procedure
with VI terminal links. Predictions are shown
for the amount-dependent exponential mod-
el and three amountindependent models:
the simple power function (¢ =0, k= s =1,
g varies), the hyperbolic with exponent mod-
el (¢ = ¢q¢ =1, k and s vary), and the power
function with additive constant model (k = s
= 1, ¢ and ¢ vary). Figure 4 shows that the
three amount-independent models made rea-
sonably accurate predictions for the self-con-
trol condition, whereas the predictions of the
amount-dependent exponential model devi-
ated systematically from the obtained data.
Specifically, the exponential model predicted

Table 4

The estimated parameters and variance accounted for in
the data from the first four conditions for a variety of
temporal discounting models.

Exponential function (amount-dependent discounting)

Bird b gs @ VAC
123 0.70 1.57 1.40 .970
125 1.46 1.11 0.84 971
139 1.12 1.04 0.77 .962
154 0.93 1.23 0.80 993

Average VAC 974

Power function (with ¢ = 0) (amount-dependent

discounting)
Bird b ass asy, VAC
123 0.70 1.22 1.16 .966
125 1.46 1.08 1.00 971
139 1.12 1.06 0.97 .962
154 0.93 1.12 0.99 994
Average VAC 973

Power function (with ¢ = 0) (amount-independent

discounting)
Bird b as VAC
123 0.70 1.20 .966
125 1.46 1.04 970
139 1.12 1.02 .961
154 0.93 1.05 991
Average VAC 972

Power function (with ¢ = 1) (amount-iindependent

discounting)
Bird b as VAC
123 0.70 2.71 943
125 1.46 2.78 .969
139 1.12 2.86 961
154 0.93 3.98 992
Average VAC .966

Power function (with ¢ varying) (amountindependent

discounting)
Bird b ¢ as VAC
123 0.70 0.32 2.03 973
125 1.46 0.41 1.61 970
139 1.12 0.91 2.63 961
154 0.93 0.80 4.47 994
Average VAC 975

Hyperbolic with exponent model (amountindependent
discounting)

Bird b k s VAC
123 0.70 1.19 2.42 971
125 1.46 1.24 1.89 970
139 1.12 1.22 1.84 961
154 0.93 1.24 1.92 989

Average VAC 973

Note. For the power function models, @ = ¢ in Equa-
tion 7 and Table 3.
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Obtained log initial-link response ratios for the self-control condition (actual), with predictions made by

four models: amount-dependent exponential discounting (exp), simple power function (pwr), power function with
additive constant (pwr w/c), and hyperbolic with exponent (hyp w/s). See text for more explanation.

much stronger preferences for the larger,
more delayed reinforcer in the VI 13-s VI 27-
s component than were actually obtained. Ab-
solute deviations of predicted from obtained
data, averaged across components and sub-
jects, were 0.573 (exponential); 0.180 (pow-
er); 0.120 (power with additive constant);
0.120 (hyperbolic with exponent). The latter
two models made the most accurate predic-
tions, which is expected because two param-
eters rather than one were estimated for
these models. However, among the one-pa-
rameter models, the predictions of the power
function were clearly more accurate than
those of the amount-dependent exponential
function.

To determine whether the results were de-
pendent on the particular value of ay select-
ed, a sensitivity analysis was conducted in
which a; was changed from 0.5 to 2.5 in step-
wise increments of 0.25 and the predictions
of the four models were computed assuming
both amount-dependent and amount-inde-
pendent discounting. Figure 5 displays the
absolute deviation (in log units) of predicted
from obtained data for each model, averaged
across components and subjects. For all dis-

counting functions, more accurate predic-
tions were obtained when sensitivity to delay
was independent of reinforcement magni-
tude. All models with amount-dependent dis-
counting predicted more extreme preference
for the large-reinforcer terminal link in the
VI 13-s VI 27-s component than was obtained.
Thus, although the present data do not allow
a discrimination to be made between the var-
ious discounting models in Table 4 in terms
of percentage of variance accounted for, it is
clear that the assumption that the rate of tem-
poral discounting is independent of reinforc-
er magnitude provides the most accurate pre-
dictions for the self-control condition. This
outcome suggests that amount-dependent
discounting does not characterize pigeons’
choice in concurrent chains, when reinforce-
ment magnitude is manipulated by varying
the duration of access to food.

DISCUSSION

Studies on human decision making with hy-
pothetical (e.g., Green, Fry, & Myerson,
1994) and real (Kirby & Marakovic, 1996) de-
layed rewards have found that rate of tem-
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Absolute deviations of predicted from obtained log initial-link response ratio for the self-control condition,

as a function of sensitivity to magnitude (a3), averaged across subjects and components. Results are shown for four
temporal discounting functions: exponential, power function, power function with additive constant, and hyperbolic
with exponent. For all models, the dashed line indicates the average absolute deviation assuming amount-dependent
discounting; the solid line shows the results assuming amount-independent discounting.

poral discounting varies inversely with rein-
forcer magnitude: The present value of a
larger, delayed sum of money (i.e., the
amount of money available now judged to be
equivalent in subjective value to the delayed
amount) decreases more slowly as a function
of delay than does the present value of a
smaller sum of money. To test whether this
finding could be extended to nonhumans, pi-
geons were trained on a two-component con-
current chain in which the terminal-link re-
inforcer magnitudes were equal within each
component but varied between components.
For all subjects, sensitivity to reinforcement

delay was slightly greater in the small-magni-
tude component (see Figure 2). Although
this difference is consistent with the human
literature, perhaps implying an inverse rela-
tion between discounting rate and reinforce-
ment magnitude in pigeons, there are several
reasons to doubt its validity.

First, the slope (i.e., sensitivity to delay) dif-
ferences in Figure 2 were quite small and
were usually within one standard error. For
each subject, a ¢ test on the slope differences
failed to reach conventional significance lev-
els. Moreover, these differences remained
small regardless of the sensitivity to the ter-
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minal-link entry ratio (a;; see Figure 3). Sec-
ond, the predictions of all temporal discount-
ing functions for the self-control condition
were more accurate if amountindependent
discounting was assumed. All of the amount-
dependent models predicted more extreme
preference for the larger reinforcer in the VI
13-s VI 27-s component than was actually ob-
tained. The amount-independent models, on
the other hand, made reasonably accurate pa-
rameter-free predictions (see Figures 4 and
5). Thus, the assumption of the matching law
that sensitivity to delay is independent of re-
inforcer magnitude provides the best overall
account of the data. The general lack of an
effect of magnitude on relative initial-link re-
sponse rates (Figure 2) contrasts sharply with
the strong effect of magnitude on overall ini-
tial-link response rates (Figure 1).

A second aim of the present study was to
assess the efficacy of several different tem-
poral discounting functions. Green and col-
leagues (Green, Fry, & Myerson, 1994; Green
& Myerson, 1993; Green et al., 1981) have
noted that the preference reversal phenom-
enon in self-control, which had been taken to
be decisive evidence against exponential dis-
counting (e.g., Ainslie & Herrnstein, 1981),
is actually consistent with amount-dependent
exponential discounting. However, Myerson
and Green (1995) compared the ability of ex-
ponential and hyperbolic functions to de-
scribe data from individual human subjects
choosing between hypothetical rewards and
found that the hyperbolic function consis-
tently accounted for more of the variance
(see also Rachlin et al., 1991). The present
study provides additional evidence against ex-
ponential discounting.

The self-control condition (Condition 5)
constituted the first test of preference rever-
sal with VI terminal links within the same
condition rather than across conditions. As
expected, preference for the smaller rein-
forcer was greater in the VI 3-s VI 17-s com-
ponent than in the VI 13-s VI 27-s component
for all subjects. For 2 subjects (Birds 123 and
125), the data showed the within-session pref-
erence reversal that was predicted by the pow-
er function model (see Figure 4). But most
important, for all temporal discounting func-
tions, predictions for the self-control condi-
tion were more accurate when amount-inde-
pendent discounting was assumed in the first

four conditions. This was true even for the
exponential model. Thus the present results
constitute strong evidence against amount-de-
pendent exponential discounting as an ac-
count of self-control.

Besides the exponential, five temporal dis-
counting functions were compared against
the data. There were three one-parameter
functions: the hyperbolic-decay model (Ma-
zur, 1984), a simple power function, and a
power function with one added to the de-
nominator (Grace, 1996). The two-parameter
functions were the hyperbolic with exponent
used by Myerson and Green (1995; initially
proposed by Loewenstein & Prelec, 1992)
and a new discounting function, a power
function with an additive constant (see Table
3). The hyperbolic-decay model was found to
be redundant with the simple power function
because inordinately large estimates for K
were obtained, which in effect converts the
model to strict matching to relative immedi-
acy. The other four models were all successful
in describing the data; the variance account-
ed for, averaged across subjects, ranged from
96.6% to 97.5%, with the two-parameter func-
tions performing slightly better, as expected
(see Table 4).

The hyperbolic with exponent discounting
function was derived by Loewenstein and Pre-
lec (1992) on the assumption that the rela-
tion between the delay to a smaller reward
and the delay to a larger, more delayed re-
ward judged to be equivalent in value was lin-
ear. This function was found by Green, Fry,
and Myerson (1994) and Myerson and Green
(1995) to provide a better account of the data
than the hyperbolic-decay model. Here, a dif-
ferent two-parameter discounting function
has been explored:

1

V= .
c+ di ©)

The simple power function and power func-
tion with one added to the denominator are
special cases of Equation 9, with ¢ = 0 and ¢
= 1, respectively. Grace (1996) showed that
the simple power function generalized the
definition of value used by the contextual
choice model (in which terminal-link value
was defined as a power function of the rate
of reinforcement; Grace, 1994) to apply to
the case of preference for variable over fixed
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Fig. 6. Reanalysis of the group-median data reported
by Green, Fry, and Myerson (1994). See text for more
explanation.

delays. In addition, Grace (1996) found that
Equation 9 with ¢ = 1 made more accurate
predictions for schedules with a high propor-
tion of very short delays (e.g., a mixed-time
1, 19-s schedule). Thus, Equation 9 is consis-
tent with a large body of empirical research
with animal subjects: choice between arbi-
trary distributions of delays to reinforcement
in concurrent chains and the adjusting-delay
procedure. To test whether this model could
also apply to human data, Equation 9 was fit-
ted to the group-median data of Green, Fry,
and Myerson (1994) that were reanalyzed by
Myerson and Green (1995). In the Green,
Fry, and Myerson experiment, college stu-
dents made repeated hypothetical choices be-
tween amounts of money available either im-
mediately or after a delay. The delayed
amount was either $1,000 or $10,000 in dif-
ferent sets of conditions. The dependent var-
iable was the “present value” of the delayed
amount (i.e., the amount of money available
immediately that was judged to be equivalent
in value to the delayed amount).

Figure 6 shows present value as a propor-
tion of the delayed amount for the median
data reported by Green, Fry, and Myerson
(1994). These data provide a clear example
of amount-dependent discounting; the pres-
ent value of $1,000 (open circles) decreases
relatively more rapidly as a function of delay
than the present value of $10,000 (filled cir-
cles). Equation 9 (pwr w/c; solid lines) and
the hyperbolic with exponent function (hyp
w/s; dashed lines) were fitted to the data, as-

suming amount-dependent discounting. The
discounting rate parameter estimates (made
separately for the $1,000 and $10,000 condi-
tions) are shown, along with the variance ac-
counted for. Equation 9 accounted for a
slightly higher proportion of the variance
than did the hyperbolic with exponent model
(99.2% vs. 98.4%). This outcome suggests
that Equation 9 can apply to human temporal
discounting data in addition to choice data
with nonhumans (Grace, 1996).

Finally, it is notable that sensitivities to de-
lay estimated for the simple power function
were quite close to perfect matching to rela-
tive immediacy (see Figure 2). Grace (1995b)
showed that both the contextual choice mod-
el (Grace, 1994) and delay-reduction theory
(Fantino, Preston, & Dunn, 1993) predicted
matching to relative immediacy when the av-
erage times spent in the terminal and initial
links were equal (i.e., Tt = Ti, and assuming
that ¢, = 1 in Equation 3). He argued that
both models could be viewed as describing
deviations from perfect matching as a func-
tion of temporal context. Because evidence
suggests that matching may be the normative
result in concurrent schedules, at least with
exponentially distributed VI schedules (e.g.,
see Williams, 1988, 1994, for review), it is
tempting to speculate that matching may also
be normative in concurrent chains when the
terminal links are exponentially distributed
VI schedules. If this is true, then Herrnstein’s
(1964) early argument, that matching could
apply equally well to concurrent chains and
concurrent schedules, would be valid. For the
present data, matching to relative immediacy
was obtained only when the simple power
function was used for the discounting func-
tion (¢ = 0 in Equation 8). Because other
data suggest that sometimes ¢ needs to be
greater than zero (e.g., Grace, 1996), an issue
for future research will be to discover the var-
iables of which c¢is a function.

In conclusion, the present results suggest
that amount-dependent discounting does not
characterize pigeons’ choice in concurrent
chains between alternatives defined in terms
of delay and magnitude of food reinforce-
ment. Because amount-dependent discount-
ing is apparently quite robust in humans, hav-
ing been obtained with hypothetical
monetary rewards (e.g., Green, Fristoe, &
Myerson, 1994), real monetary rewards (Kir-
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by, 1997), and durable-goods rewards (Kirby
& Herrnstein, 1995), it will be important to
determine whether there are conditions un-
der which humans do not show amount-de-
pendent discounting. In addition, Equation 9
deserves further investigation as an alterna-
tive form of the temporal discounting func-
tion. It accounts for representative human
data (Myerson & Green, 1995) as successfully
as the hyperbolic with exponent model does.
And Equation 9 has the important advantage
of being consistent with the literature on
choice between delayed reinforcers in con-
current chains and the adjusting-delay pro-
cedure in nonhumans (Grace, 1994, 1996).
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APPENDIX

The number of responses to each initial link (BL, BR), time allocated (in seconds) to re-
sponding in each initial link (TL,TR), and number of obtained terminal-link entries (eL, eR),
for all subjects, components, and conditions. All data are summed over the last 10 sessions of
each condition. See Table 2 for specification of terminallink schedules and reinforcement
magnitudes.

Cond- Red component Green component
Bird ition BL BR TL TR el. eR BL BR TL TR el. eR
123 1 4,909 2,170 4,378.71 1,471.86 188 172 7,083 2,485 4,221.56 1,597.09 188 172
2 1,284 6,982 1,283.81 6,438.40 164 193 2,537 10,358 1,457.37 4,387.24 169 191
3 5,944 1,782 5,143.61 1,876.18 183 157 9,564 3,083 4,107.99 1,496.05 186 174
4 1,406 12,487 677.86 5,208.50 168 192 1,845 12,957 798.96 5,131.16 170 190
5 4,388 4,462 3,392.74 2,725.40 182 178 6,040 3,697 4,030.56 2,492.76 184 176
6 6,266 2,442  4,292.42 1,967.04 182 178 6,654 3,812 3,394.94 1,951.32 183 177
125 1 1,698 3,978 1,741.66 4,184.62 175 185 1,950 2,530 2,708.85 3,769.51 175 185
2 5,793 1,727 5,053.24 1,335.91 196 164 4,883 1,561 4,915.46 1,292.66 194 166
3 2,031 4,359 1,914.22 3,857.85 176 184 1,456 4,971 1,263.28 5,004.71 169 191
4 8,916 1,228 5,450.97 828.00 195 165 8,601 782 6,159.64 685.06 212 148
5 4,906 3,444 3,071.01 2,681.54 179 181 2,722 4,807 1,940.50 4,152.16 172 188
6 2,685 3,457 2,446.73 3,270.10 179 181 2,104 4,302 2,113.28 4,104.31 171 189
139 1 990 5,167 799.79 5,525.73 162 198 1,035 5,713 725.15 5,548.61 168 192
2 5,353 1,019 5,322.43 875.77 198 162 5,171 1,443 4,805.06 1,186.28 192 168
3 2,484 3,562 2,467.60 3,527.62 174 186 2,548 4,007 2,200.56 3,376.59 181 179
4 5,196 1,271 5,183.50 1,084.81 198 162 5,048 2,136  4,054.24 1,773.10 181 179
5 3,173 3,064 2,874.45 2906.69 178 182 4,665 2,713 3,338.76 2,405.19 183 177
6 1,177 4,933 1,149.54 5,179.60 167 193 1,523 5,065 1,413.55 4,532.36 174 186
154 1 7,196 1,570 4,822.24 1,284.95 194 166 5,991 1,143 5,653.87 1,201.58 198 162
2 1,506 7,579 1,185.01 5,166.46 163 197 866 7,370 1,199.96 5,670.92 147 213
3 5,214 2,768 4,002.58 2,134.79 192 168 4,397 2,066 4,238.14 2,303.40 189 171
4 2,495 5812 2,041.45 3,921.65 171 189 2,264 4,477 2,179.98 4,237.95 176 184
5 4,766 2,398 3,972.69 2,134.54 188 172 4,699 3,369 3,318.81 2,540.45 185 175
6 7,631 1,649 4,742.27 1,199.49 183 172 5,412 1,964 4,444.47 1,761.72 186 174




